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Schur’s Lemma for Group Representations

Schur’s Lemma. Let G be a group and let ρ : G → GL(V ) and
ρ′ : G → GL(V ′) be two finite-dimensional, irreducible
representations of G over a field k. Suppose ϕ : V → V ′ is a
homomorphism of G -representations, that is, ϕ is linear and
ρ′(g) ◦ ϕ = ϕ ◦ ρ(g) for all g ∈ G . Then:

a Either ϕ is the zero map, or ϕ is an isomorphism of
representations.

b Suppose k is algebraically closed, V = V ′, and ρ = ρ′. Then
ϕ is a scalar multiple of the identity.
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V is absolutely irreducible: means V ⊗k k is irreducible

q is invariant: means q(g .v) = q(v) for all v ∈ V , g ∈ G

Claim: If q′ 6= 0 is invariant then q = λq′ for some λ ∈ k×
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ShvAb(X ), category of sheaves of abelian groups on X

RepC(G ), category of complex representations of G
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Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Abelian Categories

In an abelian category A,

HomA(A,B) is an abelian group for any two objects A,B
(and composition distributes over addition)

A has a zero object

Notions of kernel, cokernel  image

Notion of monomorphism  subobject  simple/irreducible
object

Not the full definition!



Kernels in an Abelian Category



Schur’s Lemma in an Abelian Category

Schur’s Lemma. Let A and B be simple objects in an abelian
category A. Then any nonzero element ϕ ∈ HomA(A,B) is an
isomorphism.



Schur’s Lemma in an Abelian Category

Schur’s Lemma. Let A and B be simple objects in an abelian
category A. Then any nonzero element ϕ ∈ HomA(A,B) is an
isomorphism.



Proof of Schur’s Lemma

A, B simple =⇒ no nontrivial subobjects

kerϕ ↪→ A and imϕ ↪→ B are subobjects

Since ϕ 6= 0 ∈ Hom(A,B), we have kerϕ = 0 and imϕ = B

Using some more properties of abelian categories, we can
conclude that ϕ is an isomorphism.
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Aside: Division Rings

Corollary. If A is a simple object in an abelian category, then
End(A) = Hom(A,A) is a division ring.

Proof.

Ring: Hom(A,A) is an abelian group, and composition
(multiplication) distributes over addition.

Division: Every nonzero element ϕ ∈ Hom(A,A) is invertible
by Schur’s Lemma.

So A determines an element in a Brauer group!
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Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of
Sheaves. (Don’t rely on these details!)

X a Noetherian projective scheme over a field k

E a coherent sheaf on X , dimE = dimX

Can define the reduced Hilbert polynomial p(E )

E is semi-stable if E is pure and p(F ) ≤ p(E ) for any proper
subsheaf F ⊆ E

E is stable if E is pure and p(F ) < p(E ) for any proper
subsheaf F ⊆ E
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Example: Stable Sheaves

E is stable if E is pure and p(F ) < p(E ) for any proper
subsheaf F ⊆ E

Category Coh(X ) of coherent sheaves on X is abelian

Subcategory C(p) of Coh(X ), of semi-stable sheaves with
reduced Hilbert polynomial p, is abelian

Stable sheaves are simple objects in C(p)

https://stacks.math.columbia.edu/tag/01BY
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Proposition. If F ,G are stable sheaves and p(F ) = p(G ),
then any non-trivial homomorphism f : F → G is an
isomorphism.

Corollary. If E is a stable sheaf, then End(E ) is a division
algebra over k.
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